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The purpose of this paper is to show that elliptic diophan-
tine equations cannot always be solved—in the most practical
sense—by the Thue approach, that is, by solving each of the
finitely many corresponding Thue equations of degree 4. After
a brief general discussion, which is necessarily of a heuris-
tic nature, to substantiate our claim, we consider the elliptic
equation associated with the Ochoa curve. An explicit com-
putational explanation as to the reasons for the failure of the
Thue approach in this case is followed by a complete solution
of the standard Weierstral® equation of this elliptic curve by a
method which makes use of a recent lower bound for linear
forms in elliptic logarithms.

1. INTRODUCTION

In this paper we are interested in efficient ways
to solve the elliptic diophantine equation in short
Weierstrafl form

y* = f(z) with f(z):=2*+az+b, (1.1)

where a,b € 7Z and the discriminant 4a3 + 27b2
does not vanish, in rational integers x and y. We
are also curious about the following question: Are
there such equations for which the classical ap-
proaches fall short of providing a practical solution
process—in other words, equations that defy the
standard methods of factorization and diophantine
approximation?

The answer to this question must surely be yes;
it should be relatively easy to construct such exam-
ples. We insist, however, upon equations that have
a “natural” appearance in that they at least do not
give the impression of being specially concocted for
the occasion. In particular, an interesting example
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should have rather small Weierstra3 coefficients,
and it should not have solutions with exception-
ally large coordinates.

Traditionally, the way to solve (1.1) for (z,y) €
7? is to reduce it to another problem in which
one attempts to solve the finitely many associated
Thue equations. These equations have the form
F(A,B) = m, where F' € Z[A, B] is homogeneous
of degree 4 and m # 0 belongs to a finite set. We
call this the Thue approach.

This reduction may be achieved by the factor-
ization of (1.1) in the number field Q(«) for a root
a of f(z) = 0, a process that has been described
many times and may be found in the literature in
many places, for instance [Stroeker 1984; Stroeker
and Tzanakis 1988; Tzanakis and de Weger 1989)].
When Q(a) # Q, the Thue approach requires ex-
plicit knowledge of the unit group and sometimes
of the class group of Q(«), or at least of the class
number of this field. Usually, this is no problem.
However, even for a and b of reasonable size, the
discriminant of f may be very large. Also, the class
number is often small, so the regulator can be of
considerable size. This means that, occasionally,
rather sizable fundamental units may be expected.
If, in addition, the discriminant of f contains many
small prime divisors, the number of Thue equations
to be investigated could be quite large.

Now, the resulting Thue equations have to be
dealt with one at a time and the number fields as-
sociated with these equations may be related, but
are generally distinct. Further, there are good rea-
sons to be prepared for extremely large coefficients
of a Thue equation whose corresponding field Q(«)
has a fundamental unit of exceptional size. So, al-
though there are very good, efficient and almost
certified ways to actually solve any Thue equation
(at least in principle), it is conceivable that, if all
the bad things mentioned above should happen si-
multaneously, even our modern, sophisticated com-
putational equipment would break its back over a
seemingly insignificant elliptic equation.

We had always considered the pessimistic pic-
ture just painted to be rather farfetched. Granted,

with sufficient effort, it should be possible to con-
struct such a monstrosity, but we had never come
across an unsolvable elliptic equation and never ex-
pected to do so in the natural course of events.
This until the day we tried to solve the Ochoa curve
equation, which in its original form is

3Y? = 2X° 4 385X% + 256 X — 58195. (1.2)

In [Guy 1990] Richard Guy explains how he be-
came interested in this equation. Apparently, the
problem of determining, with justification, the in-
teger solutions of (1.2), was proposed for but not
used at the 28th IMO (International Mathematical
Olympiad) in Havana. Guy was intrigued how such
a problem came to be asked, and tried to imagine
how an IMO contestant might attack it. The con-
struction used by the proposer, Juan Ochoa Mel-
ida, was based on “completing the square”, and
turned out to be a special case of a method at-
tributed to A. Néron, who mentions it in his thesis.

Realizing that he could not be sure of having
discovered all integer solutions by this and other
elementary methods, Guy contacted one of us (de
Weger), asking whether the method described in
[Tzanakis and de Weger 1989] could solve the prob-
lem. We soon found that the complete solution
of (1.2) raises difficulties, and, since solving in-
dividual equations is usually of no great interest,
we postponed further investigations. When a new
method of solving elliptic equations was considered
in [Stroeker and Tzanakis 1994], an approach in
which the estimation of linear forms in elliptic log-
arithms plays a crucial role, we realized that the
Ochoa curve might serve as an illustration of this
new method.

Instead of the original equation, we prefer to
consider the Weierstrafl representation (1.1) of the
Ochoa curve,

y® = ° — 440067z + 106074110. (1.3)

This is equation (1.1) with a = —3 - 383% and b =
2-5-73-145307. The simple linear transformation
(z,y) = (6X + 385, 18Y) maps (1.2) to (1.3).



Stroeker and de Weger: On Elliptic Diophantine Equations That Defy Thue’s Method: The Case of the Ochoa Curve 211

In Section 2, we shall try to convince the reader
that any attempt to solve the Ochoa equation by
adopting the traditional Thue approach is doomed
to failure. Section 3 gives an alternative approach:
instead of focusing merely on the Weierstrafl equa-
tion (1.3), we incorporate knowledge of the group
structure of the elliptic curve in the solution pro-
cess. This allows us to prove the following result:

Theorem. The complete set of solutions (x,y) of
(1.3), with z,y € Z and y > 0, is
{(=761,504), (—745,4520), (—557, 13356),

(—446,14616), (—17,10656), (91,8172),
(227,4228), (247,3528), (271,2592),
(455, 200), (499, 3276), (523, 4356), (530, 4660),
(599, 7576), (751, 14112), (1003, 25956),
(1862, 75778), (3511, 204552), (5287,381528),
(23527, 3607272), (64507, 16382772),
(100102, 31670478), (1657891, 2134685628).}

In [Stroeker and Tzanakis 1994] we describe how
an explicit lower bound for linear forms in elliptic
logarithms that was recently obtained by S. David
[1992] may be applied to solve elliptic equations.
Here it is proper to credit Don Zagier, who came up
with the idea of using elliptic logarithms to search
for integral points on elliptic curves [Zagier 1987].
For more examples, see also [Gebel et al.].

2. SOME RELATED THUE EQUATIONS

We now explain why it is almost impossible to solve
(1.3) by the Thue approach. Briefly, not only is the
discriminant of f(z) large and highly composite, as
Richard Guy suggested, but also the fundamental

units of the cubic field defined by a root of f(z) =0
are extraordinarily large.

Let 9 be a zero of the right-hand side of (1.3).
We calculated the particulars of the number field
K = Q%) using Pari-GP 1.38 [Batut et al. 1992],
and assisted by Maple V3 [Char et al. 1991] for the
checking of symbolic calculations. We found that
K is also generated by the number 6 defined by

6% — 6% — 815060 — 212700 = 0, (2.1)
Y = —1085 — 26 + 267, (2.2)

and that K has discriminant 1014134613 = 3 - 79 -
311 - 13759. Further, setting

w = 320 + 62, (2.3)

we established that {1,6,w} is an integral basis for
K, that the class group is trivial, and that a com-
plete set of fundamental units is given by {e1,¢5},
these numbers being defined in the sidebar below.

The large coeflicients occurring in these unit ex-
pressions will give rise to coefficients of similar sizes
at all stages of the present process of deriving Thue
equations, as we shall see below. This will present
us with enormous technical difficulties.

We let (z,y) € 7Z? be a solution to (1.3) and
factor the equation over the field K as follows:

y? = (z — P)(a® + vz + > — 3-383%).  (2.4)

Let m be a prime in K dividing the greatest com-
mon divisor of the two factors in the right-hand
side of (2.4). Then 7 divides

(z? +opa -+ —3-383%) — (z+2¢)(z—) = 3(v* —383?).

€1 =—10206011481624738138599255396089544564125332455775 — 398696619893921487609546794448189124208538086359 0

— 146398174838249319483906766573385628599646205307 w,

g2 =—2193154108081847288660158310454770017214394875593412406—85675303361455824975146666677167861215973825359698648 6

— 31459278596762653698353622953979430870421158068590645 w.

Elements of a complete set of fundamental units of K = Q(%), for ¢ a root of the polynomial defining the
Ochoa curve in Weierstraf form (1.3). The quantities  and w are defined in (2.1)—(2.3). The signs are chosen

in such a way that Normg,q(e1) = Normg/q(e2) = 1.
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o1 = 22122052781614 + 864209912843 6 + 317368021099 w

ag = 1344947024602640926510422 4 91263622546111179731456 — 5555257414014147550952w
B1 = —3743922028693350319 — 11491549896056251060 + 37711773857425364 w
B2 = —4151301567440027000178268598087676749 — 1621701000511899263930668277711421736

— 59547549380145743935399637782238353 w

v1 = —26626075741823757542864140459959250169884 — 1040144469601822148169489088698257304264 6

v2 = 277495606323 + 10840332727 6 + 3980482519 w

— 381932638301073406335338651456552936695 w

v3 = 89760581266417686363705122563 4 2754976299150444839986515684 6 — 904109383173122142766939854 w
61 = 6976691730884751996012576 + 473415048400256558585300 — 28816985170653431219117 w
62 = 26725729042737915477 4 181351889926422386 6 — 110389704347996444 w

(1 = —278293 — 188460 + 1152w

(2 = —128563464484753 — 3946111739544 6 + 1294993929312 w

m = —488903714202412249253 — 190989652183944793800 — 7012985587929199572w
n2 =

—155047559921770455434857643417 — 47590114255789298136897459126 4 1561762897865462910564655032 w

K-prime factors of the rational prime factors of Norm(383 —) and Norm(383+1) (norms with respect to K/Q).
We have Norm(a) = 2, Norm(az) = 4, Norm(3;) = Norm(82) = 3, Norm(y;) = Norm(y2) = Norm(vys) = 7,
Norm(é;) = Norm(é2) = 79, Norm(¢;) = Norm({2) = 311, and Norm(7;) = Norm(n;) = 13759.

Note that Normg,q (383 — ) = —2%-79- 311, and
Normyg/q (383 + 1) = —2% - 3* - 72 - 13759. We shall
study the prime ideal factorization in K of the rel-
evant rational primes. Using Pari we found:

(2) = (en) (@), (79) = (61)*(62),
(3) = (51)2(ﬁ2)a (311) = (CI)Z(C2)7
(7) = (m)(72)(73), (13759) = (m1)*(12),

where a1, ..., 72 are given in the sidebar above.
Further, we found
(383 — ) = (a2)*(61)(¢),

(383 + 1) = (22)(81)*(B2) (1) (v) (m)-

This shows that we can restrict © to the set

':P - {052751,,627’)’1,')’37517 Cl?Th}'

Returning to (2.4), we obtain the ideal equation

(z =) = (a) ()% (2.5)

where () is the square-free part of (z—1). Clearly,
from (2.4) and (2.5) it follows that («) is also the
square-free part of the second factor of the right-
hand side of (2.4). Hence the prime divisors of «
can only be those belonging to the set P above.
Assume 6; | a. Since « is square-free and 85 1 «,
79 divides Normg/q (« — 1) to an odd power, which

contradicts Normg,q(z — ¢) = y?. Hence é; 1 a,
and similarly we can show that ¢; { @ and n; 1 c.
Assume (; | a. Then also B, | a, because if
a = Bix, then 3 divides y?> = Normg,q(z — ¥) =
Normgq (o) x 0 = 3Normg,q(x) x O to an even
power, and hence Normg,(x) = 0 (mod 3), and
B1 1 x as « is square-free. Similarly we prove that
B | @ if and only if 3, | @, and 7, | « if and only if

vs | a.
It follows that

o= ig‘fggag(ﬂl@)q(%%y (2.6)

fOI' a, bapa q,T € {07 ]-} Since €1,€2, 02, /Bla /327 Y1573
all have positive norm, it follows from

y2 = NOI‘IIlK/Q (Oé) NOI'le/Q (§2)

that the +-sign in (2.6) may be dropped. Hence
we have to consider 32 cases for a, many of which,
hopefully, will turn out to be impossible or trivial.
For example, ¢ = r for all known solutions. How-
ever, we do not intend to follow through to the
end each and every case, since our aim is to show
the reader the seemingly insurmountable difficul-
ties we encounter on our way, and this can be done
most convincingly by means of no more than a few
well-chosen cases.
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The general argument continues as follows. From
the ideal equation (2.5) and the fact that K has
class number 1, we may write z — 1) = af?, where
« takes the form (2.6) without the +-sign.

Now take a fixed a, and write it as o = a; +
a20 + asw. Further, express £ in terms of the inte-
gral basis {1,6,w} as { = u+vf+ww, with variable
coefficients u,v,w € Z. Next write out the equa-
tion £ — 1 = «af? in terms of the integral basis
as

(x +1085) + 96 — 6w = by + b0 + bsw,

where by = by(u,v,w), by = ba(u,v,w) and by =
bs(u,v,w) are given by
by = ayu® + 14180asuv + (14180ay + 18434as)uw
+ (212700a, + 141800as3)v?
+ (14180a; + 283600ay + 4041300a3)vw
+ (9217a; + 2020650a; + 5526655a;3)w?,
by = asu® + (2a; — 38ay + 518as)uv
+ (518ay + 818as)uw
+ (—19a; + 8131ay + 7349a3)v*
+ (518a; + 14698a, + 150522a3)vw
+ (409a; + 75261a; + 222496a3)w?,
bs = asu® + (60ay + 40as)uv
+ (2a; + 40az + 570a3)uw
+ (30a; + 30ay + 8170a3)v?
+ (40a; + 16340a; + 35940a3)vw
+ (285a; + 17970a, + 98622a3)w?.

Equating coefficients gives
b, = z + 1085,

and hence

which is a quadratic equation homogeneous in the
variables u, v, w. If this equation has a solution in
rational integers, the discriminant of the left-hand
side of expression (2.7), seen as a form in one of
the variables, say w for instance, must be a perfect
square. This gives an equation of type

pou® + pruv + pav® = 2%,

which can be treated further by factorization over
the appropriate quadratic number field, or possi-
bly over Q itself. All this will lead to expressions
for u,v,w as binary quadratic forms, which, when
substituted into b, = 9 yield a quartic Thue equa-
tion.

To get a feeling for this process, we consider the
simplest case first.

The case a = 1
When a = 1, equation (2.7) gives
1673w? + (6u + 1156v)w + (4uv + 52v%) = 0,
and hence
(6u + 1156v)% — 4 - 1673 (duv + 52v%) = 22,
which implies
(18u — 3224v)? — (32)® = 27 - 7% - 23907,
It can be easily seen that the only primes dividing
both expressions 18u — 3224v + 3z belong to the
set {2,3,7,239}. This gives us a number of cases

to consider, one of which we shall follow through
(one in which a solution occurs), namely

18u — 3224v — 3z = 334642,
18u — 3224v + 3z = 7B?,
8v = AB.
We obtain
u=1818424 2BAR+ LB,
v = :AB,
z= —163&142 + %B2.
Substitution of these values into
—(6u + 1156v) £ 2z
w =
2-1673 ’

where only the +-case is considered (the other case
is easily seen to be impossible) leads to

w=—1A*—-LAB.

Again by substitution—in this case the expressions
for u, v, w are plugged into the equation by =9 (or,



214  Experimental Mathematics, Vol. 3 (1994), No. 3

equivalently, into b3 = —6)—we arrive at the Thue
equation

26176 A*+14040A° B+ 1581 A% B>+ 28 AB* = 5184.

This is a reducible Thue equation, easily seen to

possess the single solution (up to sign) A = —2,
B =92. Via
w=-2102, v=-23, w=14, 2= 7644,

this solution ultimately leads to the largest integral
point (z,y) = (1657891, 2134685628) on the Ochoa
curve (see Theorem in Section 1). All this is not
terribly complicated, but note that we took only

one of several paths, each of which should be fol-
lowed to the very end for fear of missing solutions.

A more difficult case: @ = €,0,8,8,717s

Here we obtain a Thue equation that is far from
trivial. In fact, we know in advance that this choice
will lead to a solution, namely the integral point
(x,y) = (751,14112) on (1.3). For the sake of
simplicity we change « slightly to become a =
€5 'y 41827173, which is permitted, as « is essen-
tially determined up to a square. Among those
expressions equal to a up to the square of a unit,
this choice has the “smallest” coeflicients aq, as,
a3, namely:

o = —27306731319537699191001006264482811532646948716376 — 838149574301342845586211699223716878715552135317 6

We obtain the following quadratic forms:

+ 275055214402291924514206791639436381114684189136 w.

by = —27306731319537699191001006264482811532646948716376 u? + 3900282940224499489611452305447207884206221801948480 uv
— 6814593141301192213917593897910935090718440936262036 uw — 139271585051650628360072705370412501260735721162441100v>
+ 486671968581076949002620000322241872662108895181203920 vw — 425157803931688718301171408728092312003612401237713562 w?

by = —838149574301342845586211699223716878715552135317 u? 4 119714822244762846648633150110763663743303493681742uv
— 209166314107020799761036504636826383422844339380958 uw — 4274785522930559039577562495604650556904048280690919 v2
+ 14937851715660119736362773890958955900872188797156958 vw — 13049743237531938834070335944841588873370997935087065 w?

bs = 275055214402291924514206791639436381114684189136 u? — 39286765881988893754604430287845557478345760553580 uv
+ 68642026598177284767647390736564439021454004962088 uw -+ 1402854674851553762183452948782999381366094799690330 v*
— 4902148891247078297478147324373502722256250082186980 vw + 4282529078519458974820591184636701180969531845156942 w?

Setting the discriminant of 2b,+3b3 with respect
to w equal to a square, dividing through by the
common factor 842, adjusting z accordingly, and
completing the square, we find

(pu + qv)? + rv* = p2?, (2.8)

with
p = 260946994688415995590001 7189857006773,

q=—66798359730113344614248091816253055500,
r=1682780855810222316657637883907691962391542899644864.

One can factor (2.8) over Q(v/—7). There is a finite
set of integral elements 7 in this field such that
(2.8) is equivalent to the set of equations

pu+ qu +vv/—r = m(A+ By/-r)? for A,B € Z.

We feel that in the determination of this complete
set of equations we have come to a major bottle-
neck of the method. The reason is that this imag-
inary quadratic field is incredibly complicated to
handle. For example, we tried to compute the class
number with Pari, but gave up after a while.

Therefore, we restrict ourselves to the precise
tracing of the known solution given by z = 751.
We computed 751 — ¢ = af? with £ = @281 =
u + vf + ww, where

u = —5026852980896253432,
v = —196373411473862169,
w = —72106728755792390.
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Now we simply force this solution to match the
solution A = 1, B = 0 of the final Thue equation,
which means at most a linear transformation of the
variables. In other words, we take

T =pu+qu+ vV —r
= 6784941163685025154587513864561382558884564
—196373411473862169+/—r,

u; = —5026852980896253432,

and write out, this time for unknown u, v, w, A, B:
pu+ qu + v/ —r = 1(A+ BvV/-r)%
This yields expressions
u=u1 A% + uyAB + u3 B?,
v =v,4% + v,AB + v;B?,
2 =24+ 2, AB + 23 B,

where

up = 347367817852041477690944634126204828084578784,

ug = 8459091961224764484276759528469674108535461844369860791676660941173248,

v = —196373411473862169,

vo = 13569882327370050309175027729122765117769128,

vz = 330453417418358711276290669809368597877180105838815577993368584750016,

z1 = 6519943582905173680771260,

29 = 10971636242275535344670287691303328,
z3 = 738057233607864222106326361616759617808640.

Solving equation (2.7) for w, we thus find w = wy A* + wy AB + w3 B?, with

w; = —72106728755792390,

wy = 4982751060253642907539610288312257567100720,

ws = 121339822725347885065815475155440469473090191458652944633261318891520.

Finally we substitute these expressions for u,v,w into the equation b3 = —6, which gives the following

Thue equation

A4 + €1A3B + 62A232 + €3AB3 + €4B4 = ]. (29)

with coefficients
e1 = 275942362938041219764994416,

ez = 7270898435586769944582235898620939939076465903234496,
ez = —464350525659171976385022675651296937324378997172098251639090082583192659487744,
eq = 2831751408681384231186901443536445179767896393892260193230843846375858738800296094567417576719893139456.

Clearly, this Thue equation has the desired so-
lution A = 1, B = 0. But, of course, the point
is to find all solutions, not just one. The linear
substitution

C = A+ 66812276206875247047658184 B,
D = —43466290552701157871808408B

transforms (2.9) into the apparently much more
friendly Thue equation

C*—20*D—-1125C*D*—12986C D3*+11041D* = 1.
(2.10)

Hence, the quartic field F generated by a zero of
the left-hand side of (2.9) is also generated by a
zero of the polynomial

zt — 223 — 112522 — 12986z + 11041.  (2.11)

In fact—at least Pari tells us so—amongst all poly-
nomials sharing this property, polynomial (2.11)
has the simplest form. The field discriminant of
the quartic field F is 28622935317312 = 26.33%.72.
79 - 311 - 13759. However, we could not persuade
Pari to come up with a set of fundamental units of
this totally real field, but Henri Cohen informed us
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that Pari would have produced the required units
if we had increased the number of digits precision
sufficiently and persevered a little bit longer. Nev-
ertheless, we still believe the friendly appearance
of the Thue equation (2.10) to be misleading, an
opinion supported by the fact that the regulator
of the field F is approximately 51974.47, which is
rather large. Possibly we have stumbled upon yet
another major bottleneck of the Thue approach.

We could have treated (2.8) in other ways. For
instance, it can be rewritten as

(pu + qu)? — pz? = —rv?

and factored over Q(,/p), or as

(pz)® — prv® = p(pu + qv)?,

and factored over Q(,/pr). However, we fail to see
any advantage in doing so, because working in real
quadratic fields usually is more complicated than
working in imaginary quadratic fields of compara-
ble absolute discriminant. Moreover, the resulting
Thue equations are exactly the same—we checked
this by following through the procedure described
above for the particular solution associated with
x = 751, working over these two real quadratic
fields instead of the imaginary one.
Here we finally lost faith and gave up.

3. AVOIDING THUE EQUATIONS

We have learned from the previous section that in
the present state of affairs it seems very unlikely
that the Thue approach ultimately leads to the
complete solution of our problem. Although the
Ochoa curve was chosen for this very reason, it
would be rather unsatisfactory to leave it at this.
One should discard Thue and look for alternative
ways. Luckily, there is such an alternative way
to effectively and unconditionally solve the Ochoa
problem. We shall refrain from giving a detailed
description of the method we have in mind, in
which elliptic logarithms play a decisive role, be-
cause such an account can be found in [Stroeker
and Tzanakis 1994]. We feel that an outline of its

major points should suffice, in addition of course to
a full description of the way in which the relevant
constants were obtained. We shall follow the nota-
tion of [Stroeker and Tzanakis 1994] very closely.

Our first task is to obtain complete information
about the Mordell-Weil group E(Q) of the elliptic
curve given by (1.2) or by the standard Weierstrafl
equation (1.3). Although it is generally well un-
derstood how this group E(Q) can be calculated,
the details may cause considerable difficulties. See
for instance [Cassels 1991; Cremona 1992; Knapp
1992; Silverman 1986]. But we are fortunate in this
case.

According to the Mordell-Weil theorem, we have
the following isomorphism

E(Q) = Etors(@) X ZT7

where 7 is the rank of the curve E/Q. The torsion
subgroup Ei,,s(Q) is always easily found, because
it is finite and only a few possibilities need to be
checked. In our case Ei,(Q) is trivial. Obtaining
the rank r and a set of generators for E(Q)/E;os (Q)
is much harder [Cremona 1992]. We used the pro-
gram Apecs 2.99 [Connell 1994] to search for a
set of independent points of infinite order, which
quickly established a lower bound of 4 for the rank.
To obtain an upper bound, we assumed the truth
of the standard conjectures of Birch—Swinnerton-
Dyer and Taniyama—Weil, as well as the General-
ized Riemann Hypothesis, so that the method of
[Mestre 1986] could be applied. The conditional
upper bound thus obtained confirmed our initial
guess: we could be reasonably sure that r = 4. At
the workshop on “Constructive Methods for Dio-
phantine Equations”, held in Rotterdam in June of
1994, we asked John Cremona to apply his rank al-
gorithm [Cremona 1992, p. 68] (which, incidentally,
is based on the technique originally used by Birch
and Swinnerton-Dyer in their studies) to the Ochoa
curve. His findings confirmed unconditionally the
rank assumption.

Next a basis for E(Q)/Ejors(Q) is needed. Again,
Apecs offered help here. It found four independent



Stroeker and de Weger: On Elliptic Diophantine Equations That Defy Thue’s Method: The Case of the Ochoa Curve 217

points Py, P, Ps, Py, that minimize the canonical
height-pairing Grammian |(P;, P;)|. We recall that
this height-pairing is defined by

(P,Q) = h(P+ Q) — h(P) — h(Q),

with canonical height function h. Further, Apecs
succeeded in proving that these four points cor-
respond to the successive minima. A theorem of
Minkowski [Cassels 1978, p. 257] then implies that
these four points constitute a free basis of E(Q).
Apecs found the following generators

P, = [247,3528], P, = [499, 3276],
Py =[751,14112], P, = [—761,504],

where the coordinates correspond to the Weier-
strafl equation (1.3). From here on coordinates
shall always be relative to this equation.

Let P € E(Q) with coordinates z(P), y(P) € Z.
Then

P:m1P1+m2P2+m3P3+m4P4, (31)

for Py, ..., Py as just given and my,...,my € Z.
Further, let v > 4" > 4" be the three real zeros of
the right-hand side of (1.3), which we shall denote
by f(z), and define

Eo(Q) = {(z,y) € E(Q) | z = v} U {0},

where 0 is the group identity of E(Q).
If P ¢ Eq(Q), then

—761.1957 ~ 7" < z(P) < ~' ~ 306.4170,

so such integral points are easily found by a simple
direct search.

Now suppose that P € E,(Q), and for conve-
nience assume that

z(P) > 1524 > 2max{|/, [v'], [Y"[} + 1

(see [Stroeker and Tzanakis 1994, Inequality 2]).

Let w := 2 f;o dt/+/f(t) ~ 0.2850385 be the real
period of the Weierstra$} p-function associated with
(1.3). The isomorphism

¢ : Ey(R) — R/Z (circle group),

explicitly given by

0 (mod 1) if R =0,
o(R) = i/:; % (mod 1) if y(R) >0,
—p(—R) (mod 1) if y(R) <0

(see also Eq. (5) of [Stroeker and Tzanakis 1994)),
associates with each point R of Ey(R) a unique
real value between —% and %, which in a sense
measures the distance between R and the group
identity 0. This distance, which is essentially an
elliptic logarithm, can be explicitly calculated for
each R € Ey(Q) by a very fast algorithm of Zagier
using the binary expansion of ¢(R) [Zagier 1987,
p. 430]. So, as z(P) € Z, saying that |z(P)| is very
large is equivalent to saying that ¢(P) is very close
to p(0) = 0. In other words, if |p(P)| cannot be
too small, then |z(P)| cannot be too large. Re-
ferring to (3.1), what we want is an upper bound
for
M := max |m,|,
1<i<a

and we shall deduce such a bound by combining
upper and lower bounds for |¢(P)| in terms of M.
In order to express ¢(P) in terms of my, .. ., my, we
have to adapt (3.1) slightly, because, unlike P; and
P, neither P; nor P; belongs to Ey(Q). Writing

R, = —P, — P, = [523,4356),
R, = P, = [499, 3276),

Ry = Py = [751,14112),

Ry = —P; + P, = [530, 4660],

we see from the value of v ~ 454.7786 that Ry, ...,
R, € Ey(Q). Now (3.1) may be rewritten as

2P = (—m1—m4)R1+2m2R2+2m3R3+(—m1+m4)R4.
Since 2P € Ey(Q), we deduce that

@(2P) =2p(P)=mqo+(—m1 —maq)p(R1) +2map(R>)
+2msp(R3)+ (—my +my)p(R4)
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for an integer mo—indeed, @(R) is uniquely de-
termined modulo 1. It follows from this equation
that

|m0| < |m1 +m4|+2|m2\+2\m3\+|m1—m4\ < 8M+1,

and consequently, we may take M’ = 8M + 1 in
[Stroeker and Tzanakis 1994, Eq. (14)]. An appli-
cation of S. David’s lower bound for |¢p(P)| (see
David’s Theorem in [Stroeker and Tzanakis 1994,
Appendix]) yields

lwp(P)| > exp(—cq(log M’ + 1)(loglog M’ + 1 + hg)"),
(3.2)
where hg ~ 35.6882 is the naive height of

 3156404426880769
JE = T198770384148

the j-invariant of E/Q, and

92+ 50
o =2-10%. (—) L6150 B3

e

On the other hand, an upper bound for |¢(P)] in
terms of M follows almost at once from the def-
inition of ¢; we simply reproduce [Stroeker and
Tzanakis 1994, (12)]:

lwe(P)| < 4\/§GXP(03 — i M?).

Here ¢; = 0.4795 and c; = 4.9399: see [Stroeker
and Tzanakis 1994, Inequalities 1 and 3].

Combining this upper bound with (3.2), there
emerges the following inequality for M [Stroeker
and Tzanakis 1994, (16)]:

et M? < ¢ + log(4V/2)
+cq (log(8M +1)+1)
x (loglog(8M 4+ 1) + 1+ hg)°.

From this we deduce that M < 0.5551 x 1087.
Applying the reduction process described in [de
Weger 1989] or in [Stroeker and Tzanakis 1994]
three times reduces the upper bound for M suc-
cessively to 41, 9 and 8. For this reduction process
we need the values of p(R;), ..., p(R4) to a great
precision. We programmed Zagier’s algorithm as

described in [Zagier 1987] in the very fast pro-
gramming language Ubasic 8.30 to calculate these
values, and subsequently applied the integer LLL—
algorithm provided by Pari to obtain the reduced
bases. The first reduction step required 450 deci-
mal digits precision and the next only 25 decimal
digits.

A final search for all integral points P of (1.3),
subject to

z(P) > 1524

and (3.1) with |m;| < 8, revealed no points other
than the ones listed in the Theorem (Section 1).
Also, the remaining direct searches did not produce
any unexpected points. The connections between
the 23 integer points of the Theorem and the m;-
values of (3.1) are given in Table 1.

z(P) y(P) mi ma m3 my
—761 504 0 0 0 1
—745 4520 -1 -1 0 0
—557 13356 1 0 1 0
—446 14616 0 -1 1 1

—17 10656 -1 1 0 0

91 8172 0 0 -1 -1

227 4228 -1 0 1 0
247 3528 1 0 0 0
271 2592 0 -1 0 1
455 200 -1 1 -1 -1
499 3276 0 1 0 0
523 4356 -1 0 0 -1
530 4660 -1 0 0 1
599 7576 0 -1 -1 0
751 14112 0 0 1 0
1003 25956 1 -1 0 1
1862 75778 -1 2 0 -1
3511 204552 0 1 -1 0
5287 381528 -1 0 -1 -1
23527 3607272 -1 1 1 -1
64507 16382772 1 1 0 -1
100102 31670478 1 1 0 1
1657891 2134685628 0 0 0 —2

TABLE 1. Integer points P = (z(P), y(P)) on the
Ochoa curve (1.3), and the values of my, ..., my
in (3.1) that lead to each point.
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4. CONCLUSION

In contrast to our findings of the previous sec-
tion, all values and constants directly related to
the curve E/Q and its group E(Q) are rather small.
Only the initial M-bound is large, but this is in-
herent in the diophantine approximation technique
employed and does not reflect on the curve. So,
where the Ochoa curve is extremely awkward with
respect to the Thue method, it is almost—but not
quite—a push-over for the elliptic logarithm ap-
proach.

Conversely, there are elliptic equations for which
the elliptic logarithm approach fails as a practical
method for finding integral points. This is the case
when a full set of generators for the Mordell-Weil
group is very hard to find, because some of its gen-
erators have exceptionally large heights. In those
cases the Thue approach could be more practical.
Examples should be easy to find; we refer to [Brem-
ner and Cassels 1984; Bremner 1989; Stroeker and
Top 1994]. From this last paper we take the fol-
lowing two examples of rank 1:

y®> = (z + p)(z* + p?) with p = 167 and p = 223.

For p = 167, the canonical height of a generator
is as large as 47.3231 approximately, and when
p = 223, the generator’s canonical height is ap-
proximately 25.7153. So the elliptic logarithm ap-
proach, short of being a complete failure, requires
an enormous effort in these cases. In contrast, the
Thue approach seems straightforward, especially
for p = 223; the Thue equations to be solved are

E* —4E’F? — 4F* = —p,
E* + 4pE*F? — 4p°F* =1
see |de Weger . rthermore, the funda-
de W 1994 Furth he fund

mental units of the associated quartic fields are
easy to compute using Pari.
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