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The purpose of this paper is to show that elliptic diophan-
tine equations cannot always be solved—in the most practical
sense—by the Thue approach, that is, by solving each of the
finitely many corresponding Thue equations of degree 4. After
a brief general discussion, which is necessarily of a heuris-
tic nature, to substantiate our claim, we consider the elliptic
equation associated with the Ochoa curve. An explicit com-
putational explanation as to the reasons for the failure of the
Thue approach in this case is followed by a complete solution
of the standard Weierstraß equation of this elliptic curve by a
method which makes use of a recent lower bound for linear
forms in elliptic logarithms.

1. INTRODUCTION

In this paper we are interested in e�cient ways
to solve the elliptic diophantine equation in short
Weierstra� form

y� � f�x� with f�x� �� x� � ax� b� (1.1)

where a� b � Z and the discriminant 	a� � 
�b�

does not vanish� in rational integers x and y We
are also curious about the following question� Are
there such equations for which the classical ap�
proaches fall short of providing a practical solution
process�in other words� equations that defy the
standard methods of factorization and diophantine
approximation�
The answer to this question must surely be yes�

it should be relatively easy to construct such exam�
ples We insist� however� upon equations that have
a �natural� appearance in that they at least do not
give the impression of being specially concocted for
the occasion In particular� an interesting example
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should have rather small Weierstra� coe�cients�
and it should not have solutions with exception�
ally large coordinates
Traditionally� the way to solve ���� for �x� y� �

Z� is to reduce it to another problem in which
one attempts to solve the �nitely many associated
Thue equations These equations have the form
F �A�B� � m� where F � Z�A�B� is homogeneous
of degree 	 and m �� � belongs to a �nite set We
call this the Thue approach
This reduction may be achieved by the factor�

ization of ���� in the number �eld Q ��� for a root
� of f�x� � �� a process that has been described
many times and may be found in the literature in
many places� for instance �Stroeker ���	� Stroeker
and Tzanakis ����� Tzanakis and de Weger �����
When Q ��� �� Q � the Thue approach requires ex�
plicit knowledge of the unit group and sometimes
of the class group of Q ���� or at least of the class
number of this �eld Usually� this is no problem
However� even for a and b of reasonable size� the
discriminant of f may be very large Also� the class
number is often small� so the regulator can be of
considerable size This means that� occasionally�
rather sizable fundamental units may be expected
If� in addition� the discriminant of f contains many
small prime divisors� the number of Thue equations
to be investigated could be quite large
Now� the resulting Thue equations have to be

dealt with one at a time and the number �elds as�
sociated with these equations may be related� but
are generally distinct Further� there are good rea�
sons to be prepared for extremely large coe�cients
of a Thue equation whose corresponding �eld Q ���
has a fundamental unit of exceptional size So� al�
though there are very good� e�cient and almost
certi�ed ways to actually solve any Thue equation
�at least in principle�� it is conceivable that� if all
the bad things mentioned above should happen si�
multaneously� even our modern� sophisticated com�
putational equipment would break its back over a
seemingly insigni�cant elliptic equation
We had always considered the pessimistic pic�

ture just painted to be rather farfetched Granted�

with su�cient e�ort� it should be possible to con�
struct such a monstrosity� but we had never come
across an unsolvable elliptic equation and never ex�
pected to do so in the natural course of events
This until the day we tried to solve the Ochoa curve
equation� which in its original form is

�Y � � 
X� � ���X� � 
��X � ������ (1.2)

In �Guy ����� Richard Guy explains how he be�
came interested in this equation Apparently� the
problem of determining� with justi�cation� the in�
teger solutions of ��
�� was proposed for but not
used at the 
�th IMO �International Mathematical
Olympiad� in Havana Guy was intrigued how such
a problem came to be asked� and tried to imagine
how an IMO contestant might attack it The con�
struction used by the proposer� Juan Ochoa Mel�
ida� was based on �completing the square�� and
turned out to be a special case of a method at�
tributed to A N�eron� who mentions it in his thesis
Realizing that he could not be sure of having

discovered all integer solutions by this and other
elementary methods� Guy contacted one of us �de
Weger�� asking whether the method described in
�Tzanakis and de Weger ����� could solve the prob�
lem We soon found that the complete solution
of ��
� raises di�culties� and� since solving in�
dividual equations is usually of no great interest�
we postponed further investigations When a new
method of solving elliptic equations was considered
in �Stroeker and Tzanakis ���	�� an approach in
which the estimation of linear forms in elliptic log�
arithms plays a crucial role� we realized that the
Ochoa curve might serve as an illustration of this
new method
Instead of the original equation� we prefer to

consider the Weierstra� representation ���� of the
Ochoa curve�

y� � x� � 		����x� �����	���� (1.3)

This is equation ���� with a � �� � ���� and b �

 � � � �� � �	���� The simple linear transformation
�x� y� � ��X � ���� ��Y � maps ��
� to ����
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In Section 
� we shall try to convince the reader
that any attempt to solve the Ochoa equation by
adopting the traditional Thue approach is doomed
to failure Section � gives an alternative approach�
instead of focusing merely on the Weierstra� equa�
tion ����� we incorporate knowledge of the group
structure of the elliptic curve in the solution pro�
cess This allows us to prove the following result�

Theorem. The complete set of solutions �x� y� of

������ with x� y � Z and y � �� is

f������ ����� ������ ��	��� ������ �

����
������ ������� ����� ������� ���� ���	��
�		�� �		��� �	��� 
�	��� �	��� 	��	��

����� 	���� ����� 
	���� ��	
� �
���� ��
�� ������

����� ������ ����� ����	�� ����
� 	������

����	� ������� �
���� 	����	�� ��	��� 
���	���

�	
�	�� 
���	�	�� ������� ��
�	��	��

������	� 
��������� ��������� 	�
�����	���g
In �Stroeker and Tzanakis ���	� we describe how
an explicit lower bound for linear forms in elliptic
logarithms that was recently obtained by S David
����
� may be applied to solve elliptic equations
Here it is proper to credit Don Zagier� who came up
with the idea of using elliptic logarithms to search
for integral points on elliptic curves �Zagier �����
For more examples� see also �Gebel et al�

2. SOME RELATED THUE EQUATIONS

We now explain why it is almost impossible to solve
���� by the Thue approach Brie y� not only is the
discriminant of f�x� large and highly composite� as
Richard Guy suggested� but also the fundamental

units of the cubic �eld de�ned by a root of f�x� � �
are extraordinarily large
Let � be a zero of the right�hand side of ����

We calculated the particulars of the number �eld
K � Q ��� using Pari�GP ��� �Batut et al ���
��
and assisted by Maple V� �Char et al ����� for the
checking of symbolic calculations We found that
K is also generated by the number � de�ned by

�� � �� � ����� � 
�
��� � �� (2.1)

� � ������ ��
�
� � �

�
��� (2.2)

and that K has discriminant ���	��	��� � � � �� �
��� � ����� Further� setting

� � ��
��
� � �

��
��� (2.3)

we established that f�� �� �g is an integral basis for
K � that the class group is trivial� and that a com�
plete set of fundamental units is given by f	�� 	�g�
these numbers being de�ned in the sidebar below
The large coe�cients occurring in these unit ex�

pressions will give rise to coe�cients of similar sizes
at all stages of the present process of deriving Thue
equations� as we shall see below This will present
us with enormous technical di�culties
We let �x� y� � Z� be a solution to ���� and

factor the equation over the �eld K as follows�

y� � �x� ���x� � �x� �� � � � ������ (2.4)

Let 
 be a prime in K dividing the greatest com�
mon divisor of the two factors in the right�hand
side of �
	� Then 
 divides

�x��x���
�
�
����x	���x��� � 
����
�
���

�����	�		���������������������	�������������������� ���������������	����������������	����	�����
� ���������������������	��������������	��	���

������������	�	��������	�����	�����		������������������	������	�������������������������������������
� �����������������������������	��	������	���	����

Elements of a complete set of fundamental units of K � Q ���� for � a root of the polynomial de�ning the
Ochoa curve in Weierstra� form ���
�� The quantities � and � are de�ned in �	�����	�
�� The signs are chosen
in such a way that NormK�Q ���� � NormK�Q ���� � ��
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�� � �����	�������� ���	�������� � �����	��	���
�� � �������	��	��	����	���� �������������������� � ����������	�������	����
�� � ��������	������	���� ����������	����	� � �����������������
�� � ������	�����		��			��������	������� ����	�			����������	�������������

� ����������	������������������������

�� � ���	������������������	��������	������ �	�	�����	������������	��������	����
� ���������	�	���	������������������

�� � ������	���� �	��	������� � ���	�������
�� � ���	�����������	������� �����������	�������������� � �	��	���������������������
	� � ������	��������	����� ������	���		���������	� � ���������	������������
	� � �������	������������ ����������������� � ��	����	����������

� � �������� ���� � � �����

� � ��������������� ������������� � ��������������
�� � �����	�����	����������� ��	���������������	� � �	������������������
�� � ����	����������	��������������� ����	����������������������� � ��������������	����	���

K �prime factors of the rational prime factors of Norm�
�
��� and Norm�
�
�� �norms with respect to K �Q ��
We have Norm���� � 	� Norm���� � �� Norm�	�� � Norm�	�� � 
� Norm�
�� � Norm�
�� � Norm�
�� � ��
Norm���� � Norm���� � ��� Norm���� � Norm���� � 
��� and Norm��� � Norm��� � �
����

Note that NormK�Q ����� �� � �
� � �� � ���� and
NormK�Q ���� � �� � �
� � �	 � �� � ����� We shall
study the prime ideal factorization in K of the rel�
evant rational primes Using Pari we found�

�
� � ���������

��� � ����
������

��� � �������������

���� � ���
�����

����� � ����
������

������� � ����
������

where ��� � � �� �� are given in the sidebar above
Further� we found

����� �� � ����
	��������

���� � �� � ��������
������������������

This shows that we can restrict 
 to the set

P � f��� ��� ��� ��� ��� �� ��� ��g�
Returning to �
	�� we obtain the ideal equation

�x� �� � �������� (2.5)

where ��� is the square�free part of �x��� Clearly�
from �
	� and �
�� it follows that ��� is also the
square�free part of the second factor of the right�
hand side of �
	� Hence the prime divisors of �
can only be those belonging to the set P above
Assume � j � Since � is square�free and � � ��

�� divides NormK�Q �x��� to an odd power� which

contradicts NormK�Q �x � �� � y� Hence � � ��
and similarly we can show that �� � � and �� � �
Assume �� j � Then also �� j �� because if

� � ���� then � divides y� � NormK�Q �x � �� �
NormK�Q ��� � � � �NormK�Q ��� � � to an even
power� and hence NormK�Q ��� � � �mod ��� and
�� � � as � is square�free Similarly we prove that
�� j � if and only if �� j �� and �� j � if and only if
�� j �
It follows that

� � �	a�	b��p
�������

q������
r (2.6)

for a� b� p� q� r � f�� �g Since 	�� 	�� ��� ��� ��� ��� ��
all have positive norm� it follows from

y� � NormK�Q ���NormK�Q ��
��

that the ��sign in �
�� may be dropped Hence
we have to consider �
 cases for �� many of which�
hopefully� will turn out to be impossible or trivial
For example� q � r for all known solutions How�
ever� we do not intend to follow through to the
end each and every case� since our aim is to show
the reader the seemingly insurmountable di�cul�
ties we encounter on our way� and this can be done
most convincingly by means of no more than a few
well�chosen cases
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The general argument continues as follows From
the ideal equation �
�� and the fact that K has
class number �� we may write x� � � ���� where
� takes the form �
�� without the ��sign
Now take a �xed �� and write it as � � a� �

a�� � a�� Further� express � in terms of the inte�
gral basis f�� �� �g as � � u�v��w�� with variable
coe�cients u� v� w � Z Next write out the equa�
tion x � � � ��� in terms of the integral basis
as

�x� ����� � �� � �� � b� � b�� � b���

where b� � b��u� v� w�� b� � b��u� v� w� and b� �
b��u� v� w� are given by

b� � a�u
� � �	���a�uv � ��	���a� � ��	�	a��uw

� �
�
���a� � �	����a��v
�

� ��	���a� � 
�����a� � 	�	����a��vw

� ��
��a� � 
�
����a� � ��
����a��w
��

b� � a�u
� � �
a� � ��a� � ���a��uv

� ����a� � ���a��uw

� ����a� � ����a� � ��	�a��v
�

� ����a� � �	���a� � ����

a��vw

� �	��a� � ��
��a� � 


	��a��w
��

b� � a�u
� � ���a� � 	�a��uv

� �
a� � 	�a� � ���a��uw

� ���a� � ��a� � ����a��v
�

� �	�a� � ���	�a� � ���	�a��vw

� �
��a� � �����a� � ���

a��w
��

Equating coe�cients gives

b� � x� ����� b� � �� b� � ���
and hence


b� � �b� � �� (2.7)

which is a quadratic equation homogeneous in the
variables u� v� w If this equation has a solution in
rational integers� the discriminant of the left�hand
side of expression �
��� seen as a form in one of
the variables� say w for instance� must be a perfect
square This gives an equation of type

p�u
� � p�uv � p�v

� � z��

which can be treated further by factorization over
the appropriate quadratic number �eld� or possi�
bly over Q itself All this will lead to expressions
for u� v� w as binary quadratic forms� which� when
substituted into b� � � yield a quartic Thue equa�
tion
To get a feeling for this process� we consider the

simplest case �rst

The case � � 1

When � � �� equation �
�� gives

����w� � ��u� ����v�w � �	uv � �
v�� � ��

and hence

��u� ����v�� � 	 � �����	uv � �
v�� � z��

which implies

���u� �

	v�� � ��z�� � 

 � �� � 
��v��
It can be easily seen that the only primes dividing
both expressions ��u � �

	v � �z belong to the
set f
� �� �� 
��g This gives us a number of cases
to consider� one of which we shall follow through
�one in which a solution occurs�� namely

��u� �

	v � �z � ��	�A��

��u� �

	v � �z � �B��

�v � AB�

We obtain

u � ��
�
��

A� � 	��
��
AB � 


��
B��

v � �
�
AB�

z � � ��
�
�
A� � 


�
B��

Substitution of these values into

w �
���u� ����v�� z


 � ���� �

where only the ��case is considered �the other case
is easily seen to be impossible� leads to

w � � �
�
A� � �

��
AB�

Again by substitution�in this case the expressions
for u� v� w are plugged into the equation b� � � �or�
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equivalently� into b� � ����we arrive at the Thue
equation


����A	��	�	�A�B�����A�B��
�AB� � ���	�

This is a reducible Thue equation� easily seen to
possess the single solution �up to sign� A � �
�
B � �
 Via

u � �
��
� v � �
�� w � �	� z � ��		�

this solution ultimately leads to the largest integral
point �x� y� � ��������� 
��	����
�� on the Ochoa
curve �see Theorem in Section �� All this is not
terribly complicated� but note that we took only

one of several paths� each of which should be fol�
lowed to the very end for fear of missing solutions

A more difficult case: � � 	2�2�1�2�1�3

Here we obtain a Thue equation that is far from
trivial In fact� we know in advance that this choice
will lead to a solution� namely the integral point
�x� y� � ����� �	��
� on ���� For the sake of
simplicity we change � slightly to become � �
	��
� ����������� which is permitted� as � is essen�
tially determined up to a square Among those
expressions equal to � up to the square of a unit�
this choice has the �smallest� coe�cients a�� a��
a�� namely�

� � ������������	����������������

�����	���
��
�������� ����
�	�
����
��
		�������������������			���	����

� ��	�		��

�������
	�
���������
�������
��
��������

We obtain the following quadratic forms�

b������	��������������		�		�������������������u
� � ��		�����	���������������	�����	�����	����	������	uv

� ����������	������������������	���	�	�����	����	�uw � ���������	���	���		���	���	����	��	������������		v�

� ���������	����		��				�����������	��������	���	vw � �������	����������	�����	����	�����		����	���������w�

b�������������	����������������������������������u
� � ����������������������	��	�������	���������uv

� �	������	�	�	�����	��	������������������	���uw � ������������	���	����������	��	���	�	����	�	���v�

� �����������	������������	�������		��������������vw � ��	�����������������	�	�����������������	������	��	�w�

b�����	������	�����������	��������������������u� � ������������������	���	����������������	�����	uv

� ���	����������������	�������	�����		���	��uw � ��	���������������������������������	������	��	v�

� ��	����������	������������������	��������		������	vw � �������	�������������	��������	���	�������������w�

Setting the discriminant of 
b���b� with respect
to w equal to a square� dividing through by the
common factor �	�� adjusting z accordingly� and
completing the square� we �nd

�pu� qv�� � rv� � pz�� (2.8)

with

p��	���������������			��������		����

q����������	�����������	�������	���		�

r������	�����	�������������	�������������������

One can factor �
�� over Q �
p�r� There is a �nite

set of integral elements 
 in this �eld such that
�
�� is equivalent to the set of equations

pu� qv � v
p�r � 
�A�B

p�r�� for A�B � Z �

We feel that in the determination of this complete
set of equations we have come to a major bottle�
neck of the method The reason is that this imag�
inary quadratic �eld is incredibly complicated to
handle For example� we tried to compute the class
number with Pari� but gave up after a while
Therefore� we restrict ourselves to the precise

tracing of the known solution given by x � ���
We computed ��� � � � ��� with � � ��

����� �
u� v� � w�� where

u � ���
���
������
��	�
�
v � �������	��	����
����
w � ��
����
������
����



Stroeker and de Weger: On Elliptic Diophantine Equations That Defy Thue’s Method: The Case of the Ochoa Curve 215

Now we simply force this solution to match the
solution A � �� B � � of the �nal Thue equation�
which means at most a linear transformation of the
variables In other words� we take

� � pu qv  v
p�r

� ���������
����	���������
������
�	���������

� ���
�
�����
��	���
p�r�

and write out� this time for unknown u� v� w�A�B�

pu� qv � v
p�r � 
�A�B

p�r���
This yields expressions

u � u�A
� � u�AB � u�B

��

v � v�A
� � v�AB � v�B

��

z � z�A
� � z�AB � z�B

��

where

u� � ���	���	������	�
�
	� u� � 
��
�������	�������������
��	�	���	�����������

u� � ����������		�������	������	�����������
�������
�������������������
	���

v� � ����
�
�����
��	���� v� � �
�����	
	�
�����
������	��	��		����������	��

v� � 

���
������
�����	��	��������
���������������
���������

������������

z� � ������
��	�����
������	��� z� � ������
�	�		���
�
�����	�����
�

	��

z� � �
����	

������			���
	�
������������������

Solving equation �
�� for w� we thus �nd w � w�A
� � w�AB � w�B

�� with

w� � ��	����	������	
��� w� � ���	������	�
��	����
����	��
�		���������	��

w� � �	�

��		�	�
�������������������������
�����������	����

	��
������	��

Finally we substitute these expressions for u� v� w into the equation b� � ��� which gives the following
Thue equation

A	 � e�A
�B � e�A

�B� � e�AB
� � e	B

	 � � (2.9)

with coe�cients

e� � ��	�
��������
������
��

���

e� � �������
�		������

	����	���������������
�	�����

���

e� � �
�
�	�	�	�	���������	�����	�	���������
�������������	����������	������	�
���

�

e� � �����	�
�������
���������

�	��

	�������������������������
��
���	�	������������
	��
��	�����������
	��

Clearly� this Thue equation has the desired so�
lution A � �� B � � But� of course� the point
is to �nd all solutions� not just one The linear
substitution

C � A� ����

��
�����
	��	������	B�

D � �	�	��
����
������������	�B

transforms �
�� into the apparently much more
friendly Thue equation

C	�
C�D���
�C�D���
���CD�����	�D	 � ��

(2.10)

Hence� the quartic �eld F generated by a zero of
the left�hand side of �
�� is also generated by a
zero of the polynomial

x	 � 
x� � ��
�x� � �
���x� ���	�� (2.11)

In fact�at least Pari tells us so�amongst all poly�
nomials sharing this property� polynomial �
���
has the simplest form The �eld discriminant of
the quartic �eld F is 
��

��������
 � 
� � �� � �� �
�� � ��� � ����� However� we could not persuade
Pari to come up with a set of fundamental units of
this totally real �eld� but Henri Cohen informed us
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that Pari would have produced the required units
if we had increased the number of digits precision
su�ciently and persevered a little bit longer Nev�
ertheless� we still believe the friendly appearance
of the Thue equation �
��� to be misleading� an
opinion supported by the fact that the regulator
of the �eld F is approximately ����	�	�� which is
rather large Possibly we have stumbled upon yet
another major bottleneck of the Thue approach
We could have treated �
�� in other ways For

instance� it can be rewritten as

�pu� qv�� � pz� � �rv�

and factored over Q �
p
p�� or as

�pz�� � prv� � p�pu� qv���

and factored over Q �
p
pr� However� we fail to see

any advantage in doing so� because working in real
quadratic �elds usually is more complicated than
working in imaginary quadratic �elds of compara�
ble absolute discriminant Moreover� the resulting
Thue equations are exactly the same�we checked
this by following through the procedure described
above for the particular solution associated with
x � ���� working over these two real quadratic
�elds instead of the imaginary one
Here we �nally lost faith and gave up

3. AVOIDING THUE EQUATIONS

We have learned from the previous section that in
the present state of a�airs it seems very unlikely
that the Thue approach ultimately leads to the
complete solution of our problem Although the
Ochoa curve was chosen for this very reason� it
would be rather unsatisfactory to leave it at this
One should discard Thue and look for alternative
ways Luckily� there is such an alternative way
to e�ectively and unconditionally solve the Ochoa
problem We shall refrain from giving a detailed
description of the method we have in mind� in
which elliptic logarithms play a decisive role� be�
cause such an account can be found in �Stroeker
and Tzanakis ���	� We feel that an outline of its

major points should su�ce� in addition of course to
a full description of the way in which the relevant
constants were obtained We shall follow the nota�
tion of �Stroeker and Tzanakis ���	� very closely
Our �rst task is to obtain complete information

about the Mordell!Weil group E�Q � of the elliptic
curve given by ��
� or by the standard Weierstra�
equation ���� Although it is generally well un�
derstood how this group E�Q � can be calculated�
the details may cause considerable di�culties See
for instance �Cassels ����� Cremona ���
� Knapp
���
� Silverman ����� But we are fortunate in this
case
According to the Mordell!Weil theorem� we have

the following isomorphism

E�Q � �� Etors�Q � � Zr �

where r is the rank of the curve E�Q  The torsion
subgroup Etors�Q � is always easily found� because
it is �nite and only a few possibilities need to be
checked In our case Etors�Q � is trivial Obtaining
the rank r and a set of generators forE�Q ��Etors�Q �
is much harder �Cremona ���
� We used the pro�
gram Apecs 
�� �Connell ���	� to search for a
set of independent points of in�nite order� which
quickly established a lower bound of 	 for the rank
To obtain an upper bound� we assumed the truth
of the standard conjectures of Birch!Swinnerton�
Dyer and Taniyama!Weil� as well as the General�
ized Riemann Hypothesis� so that the method of
�Mestre ����� could be applied The conditional
upper bound thus obtained con�rmed our initial
guess� we could be reasonably sure that r � 	 At
the workshop on �Constructive Methods for Dio�
phantine Equations�� held in Rotterdam in June of
���	� we asked John Cremona to apply his rank al�
gorithm �Cremona ���
� p ��� �which� incidentally�
is based on the technique originally used by Birch
and Swinnerton�Dyer in their studies� to the Ochoa
curve His �ndings con�rmed unconditionally the
rank assumption
Next a basis for E�Q ��Etors�Q � is needed Again�

Apecs o�ered help here It found four independent
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points P�� P�� P�� P	� that minimize the canonical
height�pairing Grammian jhPi� Pjij We recall that
this height�pairing is de�ned by

hP�Qi � "h�P �Q�� "h�P �� "h�Q��

with canonical height function "h Further� Apecs
succeeded in proving that these four points cor�
respond to the successive minima A theorem of
Minkowski �Cassels ����� p 
��� then implies that
these four points constitute a free basis of E�Q �
Apecs found the following generators

P� � �
	�� ��
���

P� � ����� �	��
��

P� � �	��� �
����

P	 � ������ ��	��
where the coordinates correspond to the Weier�
stra� equation ���� From here on coordinates
shall always be relative to this equation
Let P � E�Q � with coordinates x�P �� y�P � � Z

Then

P � m�P� �m�P� �m�P� �m	P	� (3.1)

for P�� � � �� P	 as just given and m�� � � � �m	 � Z
Further� let � � �� � ��� be the three real zeros of
the right�hand side of ����� which we shall denote
by f�x�� and de�ne

E��Q � � f�x� y� � E�Q � j x 	 �g 
 f�g�
where � is the group identity of E�Q �
If P �� E��Q �� then

��������� � ��� � x�P � � �� � ����	����

so such integral points are easily found by a simple
direct search
Now suppose that P � E��Q �� and for conve�

nience assume that

x�P � 	 ��
	 � 
maxfj�j� j��j� j���jg� �

�see �Stroeker and Tzanakis ���	� Inequality 
��

Let � �� 

R�
�
dt�
p
f�t� � ��
������ be the real

period of theWeierstra� ��function associated with
���� The isomorphism

� � E��R � � R�Z �circle group��

explicitly given by

��R� �

�����
����

� �mod �� if R � ��

�

�

Z �

x�R�

dtp
f�t�

�mod �� if y�R� 	 ��

����R� �mod �� if y�R�  �

�see also Eq ��� of �Stroeker and Tzanakis ���	���
associates with each point R of E��R � a unique
real value between � �

�
and �

�
� which in a sense

measures the distance between R and the group
identity � This distance� which is essentially an
elliptic logarithm� can be explicitly calculated for
each R � E��Q � by a very fast algorithm of Zagier
using the binary expansion of ��R� �Zagier �����
p 	��� So� as x�P � � Z� saying that jx�P �j is very
large is equivalent to saying that ��P � is very close
to ���� � � In other words� if j��P �j cannot be
too small� then jx�P �j cannot be too large Re�
ferring to ����� what we want is an upper bound
for

M �� max
��i�	

jmij�

and we shall deduce such a bound by combining
upper and lower bounds for j��P �j in terms of M 
In order to express ��P � in terms ofm�� � � ��m	� we
have to adapt ���� slightly� because� unlike P� and
P�� neither P� nor P	 belongs to E��Q � Writing

R� � �P� � P	 � ��
�� 	�����

R� � P� � �	��� �
����

R� � P� � ����� �	��
��

R	 � �P� � P	 � ����� 	�����

we see from the value of � � 	�	����� that R�� � � � �
R	 � E��Q � Now ���� may be rewritten as

	P � ��m��m	�R�	m�R�	m�R���m�m	�R	�

Since 
P � E��Q �� we deduce that

��	P ��	��P ��m���m��m	���R��	m���R��

	m���R����m�m	���R	�
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for an integer m��indeed� ��R� is uniquely de�
termined modulo � It follows from this equation
that

jm�j � jm�m	j	jm�j	jm�j jm��m	j � �M��

and consequently� we may take M � � �M � � in
�Stroeker and Tzanakis ���	� Eq ��	�� An appli�
cation of S David#s lower bound for j��P �j �see
David#s Theorem in �Stroeker and Tzanakis ���	�
Appendix�� yields

j���P �j � exp��c	�logM �  ���log logM �  �  hE�
���

(3.2)

where hE � ������
 is the naive height of

jE �
����	�		
�������

��������	�	�
�

the j�invariant of E�Q � and

c	 � 
 � ��	� �
�

e

���
� ���� � h�

E�

On the other hand� an upper bound for j��P �j in
terms of M follows almost at once from the def�
inition of �� we simply reproduce �Stroeker and
Tzanakis ���	� ��
���

j���P �j  	
p

 exp�c� � c�M

���

Here c� � ��	��� and c� � 	������ see �Stroeker
and Tzanakis ���	� Inequalities � and ��
Combining this upper bound with ��
�� there

emerges the following inequality for M �Stroeker
and Tzanakis ���	� ������

c�M
� � c� � log�	

p

�

� c	 �log��M � �� � ��

� �log log��M � �� � � � hE�
�
�

From this we deduce that M  ������ � ���

Applying the reduction process described in �de
Weger ����� or in �Stroeker and Tzanakis ���	�
three times reduces the upper bound for M suc�
cessively to 	�� � and � For this reduction process
we need the values of ��Ri�� � � �� ��R	� to a great
precision We programmed Zagier#s algorithm as

described in �Zagier ����� in the very fast pro�
gramming language Ubasic ��� to calculate these
values� and subsequently applied the integer LLL!
algorithm provided by Pari to obtain the reduced
bases The �rst reduction step required 	�� deci�
mal digits precision and the next only 
� decimal
digits
A �nal search for all integral points P of �����

subject to

x�P � 	 ��
	

and ���� with jmij  �� revealed no points other
than the ones listed in the Theorem �Section ��
Also� the remaining direct searches did not produce
any unexpected points The connections between
the 
� integer points of the Theorem and the mi�
values of ���� are given in Table �

x�P � y�P � m� m� m� m	

���� ��� � � � �
���� ��	� �� �� � �
���� �

�� � � � �
���� ����� � �� � �
��� ����� �� � � �
�� ���	 � � �� ��
		� �		� �� � � �
	�� 
�	� � � � �
	�� 	��	 � �� � �
��� 	�� �� � �� ��
��� 
	�� � � � �
�	
 �
�� �� � � ��
�
� ���� �� � � �
��� ���� � �� �� �
��� ����	 � � � �
���
 	���� � �� � �
���	 ����� �� 	 � ��

��� 	����	 � � �� �
�	�� 
���	� �� � �� ��
	
�	� 
���	�	 �� � � ��
����� ��
�	��	 � � � ��
�����	 
������� � � � �
������� 	�
�����	� � � � �	
TABLE 1. Integer points P � �x�P �� y�P �� on the
Ochoa curve ���
�� and the values of m�� � � �� m	

in �
��� that lead to each point�
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4. CONCLUSION

In contrast to our �ndings of the previous sec�
tion� all values and constants directly related to
the curveE�Q and its group E�Q � are rather small
Only the initial M �bound is large� but this is in�
herent in the diophantine approximation technique
employed and does not re ect on the curve So�
where the Ochoa curve is extremely awkward with
respect to the Thue method� it is almost�but not
quite�a push�over for the elliptic logarithm ap�
proach
Conversely� there are elliptic equations for which

the elliptic logarithm approach fails as a practical
method for �nding integral points This is the case
when a full set of generators for the Mordell!Weil
group is very hard to �nd� because some of its gen�
erators have exceptionally large heights In those
cases the Thue approach could be more practical
Examples should be easy to �nd� we refer to �Brem�
ner and Cassels ���	� Bremner ����� Stroeker and
Top ���	� From this last paper we take the fol�
lowing two examples of rank ��

y� � �x� p��x� � p�� with p � ��� and p � 

�

For p � ���� the canonical height of a generator
is as large as 	���
�� approximately� and when
p � 

�� the generator#s canonical height is ap�
proximately 
������ So the elliptic logarithm ap�
proach� short of being a complete failure� requires
an enormous e�ort in these cases In contrast� the
Thue approach seems straightforward� especially
for p � 

�� the Thue equations to be solved are

E	 � 	E�F � � 	F 	 � �p�
E	 � 	pE�F � � 	p�F 	 � �

�see �de Weger ���	�� Furthermore� the funda�
mental units of the associated quartic �elds are
easy to compute using Pari
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